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What!? No Tales from the Cave?
• Look at one of the Lessons Learned:  Assigning Error Bars

I. What kinds of errors are important for SEE testing?
A. Random Errors
B. Systematic Errors

II. Estimating Random Errors
A. Poisson fluctuations of SEE counts
B. Part-to-Part variations (Binomial statistics...or not?)
C. Others?

III. Distribution-Independent Error Analysis
A. Bootstrapping
B. Examples

IV. Systematic Errors—a work in progress
A. Contamination of Datasets
B. Others

V. Conclusions



Random Errors

100%
Random Errors

The more data we take, 
the more we find out 
about both our signal and 
the errors on it. 



Systematic Errors

100%

Systematic Errors
1)may introduce biases
2)may reflect errors in 
procedure
3) are not reduced by 
taking more data
4)require special analysis 
to elucidate and estimate



Random Errors: Poisson Fluctuations
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• Observation of n SEE counts 
may represent a fluctuation 
from the real mean µ
– real cross section σ= µ/fluence

• What can we say about µ if we 
observe n events?
– Look at what µ could be if our 

observation of n just barely 
has probability 1-CL

• Poisson distribution—probability 
of  n counts when we expect µ
– P(n, µ)= µneµ/n! 
– asymmetric, esp. for µ small
– standard deviation, sd= µ1/2



Upper Bounds for µ Given n
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Confidence Interval for µ Given n
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Confidence intervals (upper and lower bounds for µ consistent 
with a given confidence CL) can be used to define upper and  
lower error bars for SEE cross section measurements. 



Other Random Errors
Part-to-part variability
• Have not been major 

concerns in SEE testing 
• But...

– Commercial parts sometimes 
show lot-to-lot variation

• How do we know our test 
sample is representative?

• Dealing with variation
– Binomial Statistics

• Independent of distribution 
but requires large samples

– Assume a distribution form
• Less general, but requires 

smaller samples

• Others?
– Noise (e.g. on an A to D)
– Measurement errors

• Normally distributed?
– Beam fluctuations?

• probably random; if 
systematic, they would be 
noticed facility to facility

– And so on
• So we could have

– Poisson errors on event 
counts

– Sampling errors part-to-part
– Various other errors 

• This is getting complicated!
• Can we use a distribution-

independent method 



Bootstrapping

• Bootstrapping constructs a 
distribution from the 
samples
– Suppose we have a 

sample from a parent 
distribution:

{n1,n2,n3,... ,nm-1 ,nm}
– Construct a large number 

of m-element samples by 
drawing with replacement:

{n5,n1,n5,... ,n2 ,n3}
{n7,n2, ,n4,... ,nm-6 ,nm-9} and 

so on
– Bootstrapped sample 

statistics reasonably 
reproduce those of the 
parent distribution 

• no assumptions about 
distribution

• Caveats:
• As Tom Lehrer’s friend 

Hen3ry said:
“Life is like a sewer; you 

get out of it what you 
put into it.”

• Bootstrapping 
analyses are only as 
representative as the 
samples on which they 
are based.

not representative

more representative



Bootstrapping Errors for SEU
Example: Errors on σSEU for an SDRAM

1st read:
n1 errors after f1 ions

after run of m reads:
{(n1,f1), (n2,f2)... (nm,fm)}

σ=
(n1+n2+...+n)/(f1+f2+ fm)

make pseudoruns from 
{(n1,f1), (n2,f2)... (nm,fm)},

each with m “reads”

{(n3,f3), (nm,fm)... (nm,fm)}
{(n2,f2), (n2,f2)... (n5,f5)}

.

.

.
{(n6,f6), (n4,f4)... (n9,f9)}

calculate σ*s=
(n1

*+n2
*+...+nm

*)
(f1*+f2*+ fm*)

for each pseudorun

Rank σ*s smallest to largest:
If we have 10000 σ*s,
σ*9000 is the 90% CL upper 
bound on σ;
σ*500 and σ*9500 are the limits 
of the 90% CI for σ

Note: No assumptions made
about distribution of σs—the 
data determine the distribution.
Whatever we include gets 
modeled:
Poisson  fluctuations
Part-to-part variations
etc.



Yeah, But Will it Work on Real Data?
• Clearly need clean data to look at each SEE (but need that anyway)
• Need to know the real fluence and time for each read

– Could we use the moving average + record # to estimate flux vs. time?
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Cleaner Data
• The nice thing about big errors is they stand out

– The cleaned dataset keeps most of the SEUs and tosses most of 
the SEFIs

– We look only at the first ~680 records where we’re pretty sure 
things are operating as expected.  
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Bootstrap for “Clean” Data
• Look at 1st 670 records where performance is consistent 

– (130882 SEUs)
• Generate 10000 pseudoruns of 670 records each 

– Rank event totals for pseudoruns smallest to largest
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Systematic Errors

• Contamination of SEU data with SEFIs is a systematic error
– leads to overestimate of the cross section
– may become more significant at high LET
– taking more data does not reduce the errors

• Systematic errors need to be investigated and estimated
– special experiments or analyses are needed

• Other possible systematic errors for SEE cross sections
– miscalibration of fluence, dead time in experiment, burst errors

• Systematic errors may also have some distribution
• Combining random and systematic errors (use same CL for both)

– Independent of each other, so best estimate is RMS
– Bounding estimate is the sum of the absolute values
– Important: Systematic errors usually not symmetric—combine by sign
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Conclusions
• Error analysis for SEE is complicated

– May have multiple sources of both random and systematic errors
– Systematic errors especially may not be well understood

• Random errors are assumed to be Poisson
– If there may be other sources of random errors—bootstrapping 

provides a distribution-independent approach for error analysis
• Need to know ion fluence for each readout

• Systematic errors remain a challenge
– Contamination, deadtime, burst errors may all become more 

important as parts become more complicated.

• If we can model random and systematic errors, we can bound 
SEE rates for a given CL and consistent with experimental 
limitations
– SEE data is always limited
– When testing complicated parts, it may be even more so.


